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This paper describes a model problem where compact surface vibration radiates 
sound into a subsonically flowing fluid. There are two distinct acoustic effects. 
First, the radiation is increased by flow by an amount proportional to 5M2 and 
that increase is shown by a general argument to arise from an enhanced surface 
damping and work done by the flow to overcome drag in the ratio 2 : 1. Second, 
the acoustic source strength is affected and resonance frequencies are significantly 
modified by flow. The main effect is that flow induces on the surface a force 
proportional to the displacement which opposes the action of natural surface 
elasticity. A critical velocity exists beyond which the surface is unstable; the 
stability limit is determined. The surface motion might be regarded as an acoustic 
monopole, but since aerodynamic fields are determined by the rate of change of 
the rate of mass outflow, the frequency dependence is more that of a quadrupole. 
Convective amplification of the sound is also shown to be that characteristic of 
quadrupole sources. This result indicates that real simple fields may be more 
sensitive to convection than might be expected from past studies of simple 
inhomogeneities satisfying a convected wave equation. 

1. Introduction 
The influence of flow on the level and directionality of sound generated by 

internal sources is known to be sometimes significant and often perplexing. 
Mani (1974) has described important changes in the fields of idealized mathe- 
matical models of sources immersed in il flow and Ffowcs Williams (1974) has 
shown how the proximity of flow dramatically influences sound generated by 
turbulence. The noise radiated by an aircraft in flight does not seem to be pre- 
dictable from a knowledge of the engine noise under equivalent static conditions. 
Hoch & Hawkins (1974) gave evidence that jet noise actually increases in some 
directions despite the alleviating effect of the flight reduction in relative jet 
velocity. Of course, source motion is known to influence the radiated sound but 
these recent results are of a degree that is not easily anticipated from the 
numerous moving-source studies available in the literature. 
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Lowson's ( 1965) comprehensive analysis of the sound generated by singularities 
in motion allows a simple evaluation of convective effects on compact sources of 
any known type, while the general results describing aerodynamic sound from 
turbulence and surfaces in arbitrary motion (Ffowcs Williams & Hawkings 1969) 
show that convection of any single source element is simply accounted for 
in the various effects attributable to the Doppler contraction of the wave scale. 
To those effects may have to be added any influence that motion may have on the 
relative strengths of different sources, which, if substantial, would make the field 
of isolated model sources less relevant in practice. I n  that event, the exact expres- 
sions worked out by Ffowcs Williams & Hawkings, which are actually integral 
forms of the governing wave equation, could not be regarded as effectively dis- 
playing all the important convective effects; some would still reside in an implicit 
interdependence of the various source elements, the degree of which might vary 
with changes in the convection, or flow, velocity. This actually seems to be the 
case, and we illustrate the point in this paper through a detailed study of what is 
possibly the simplest source type. 

We describe the effect of uniform flow on the sound generated by a vibrating 
piston set in an infinite otherwise plane baffle. This problem would a t  first sight 
appear to be well modelled by an acoustic monopole, whose (linear) field is 
increased by source motion by the second power of the Doppler factor; cf. Ffowcs 
Williams & Hawkings (1969, equation 5.1). I n  fact, we show that the obvious in- 
terpretation of that integral formula is wrong and that, when carefully analysed, 
i t  contains another power of the Doppler factor making the field of this apparent 
simple n~onopole increase in intensity according to (1 - M cos 0)-6, the clepend- 
ence thought typical of quadrupoles ! The effect is, in this case, correctly anti- 
cipatedwhen it is appreciated that the monopole, in displacing fluid, also displaces 
mean-flow momentum, which induces a significant dipole, phase locked to  the 
monopole; it is also correctly anticipated when it  is appreciated that the funda- 
mental aeroacoustic source strength is the rate of change of the rate of mass 
outflow, and that therefore the field is modified by the two Doppler factors 
characteristic of quadrupoles. But we have reason to believe this simple explana- 
tion to be adequate only when the flow is weakly perturbed from its mean state. 
One of our objectives in presenting this analysis of a simple boundary-value 
problem is to help to clarify the flow effects on model sources and to bring to light 
the fact that general formulae which display convective effects sometimes need 
cautious handling. 

The problem has further significance in that i t  throws light on the acoustic 
interaction with flow-induced instabilities and illustrates how flow over com- 
pliant surfaces can feed energy into the acoustic field. Surfaces in contact with 
flow often vibrate in practice, sometimes, as in the SONAR transmitter, because 
they are deliberately forced and sometimes because they are made compliant 
and damped to respond to and absorb acoustic energy, as is the case in acousti- 
cally treated aircraft engine intakes and exhausts. Flow over a compliant surface 
is often unstable, and high damping cannot always inhibit the instabilities 
(Benjamin 1963). Are these instabilities coupled to the sound and, in an acoustic 
liner, could they possibly produce more sound than the liner absorbs? It was 
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observed by Dean (1972) and Tester (1973) that some acoustic modes grow in 
the presence of flowing fluid. And even when the motion is stable, convective 
amplification of sound results in an enhancement of any acoustic field leaving a 
vibrating surface. What is the origin of the extra energy in that field, and does 
flow substantially change the mode in which surfaces resound? This issue is 
probably too complex readily to admit general conclusions and progress must 
rest on detailed observation in experiments and on precise analysis of the tract- 
able model problems. The problem treated here is such a one, and from its solution 
we determine that instability is a real issue and that flow effects can radically 
change the vibrational response of compliant surfaces and feed energy directly 
into the sound as well as causing the surface vibration to convert its energy into 
sound more effectively. 

We assume in our model that the flow velocity is constant and that the surface 
vibration has no bearing on the overall mean state. The fluid is inviscid. 
Boundary-layer effects are obviously important in practice but are too difficult 
for us to treat analytically. Consequently our model will have limited practical 
application but should be relevant whenever the boundary-layer thickness is 
much smaller than the characteristic scale of the surface vibrations. Since 
this problem can be solved exactly the model forms a useful base from which 
we can gain an understanding of the mechanics underlying the more complex 
situation. 

Our problem can be sensibly divided into two sections. There is the purely 
acoustic effect of a compact source moving uniformly a t  low Mach number 
relative t o  a fluid. We treat this without having to specify the source details 
assuming that the surface displacement is independent of motion. Motion is 
known to increase the radiated energy by an amount proportional to M2 

(Lighthill 1952). In fact, Lighthill’s analysis carries over directly since the surface 
source term is subject to quadrupole-like Doppler amplification, two Doppler 
factors arising from the two rate-of-change operators and one from the usual 
convective expansion of the source volume. We show in our problem that the 
energy increase is 5M2 times the energy radiated in static fluid. This energy is 
provided by two distinct effects. First, there is increased mechanical damping, 
and second, energy is extracted from the mean flow in overcoming the drag on 
the vibrating surface. These increases contribute energy in the ratio 2 :  I .  The 
flow has also a non-acoustic effect on the surface vibration; the response ampli- 
tude, the resonance frequency and the effective mechanical damping are all 
affected, and this in turn alters the acoustic source strength. This is usually more 
important than the purely acoustic effect. 

We consider a circular piston which is free to vibrate normally in an otherwise 
rigid plane wall but even this local problem is not trivial. There are easily foreseen 
difficulties associated with the singularities of the potential flow a t  sharp edges 
of the piston and baffle. Batchelor (1967, p. 226) shows that the resulting force 
is logarithmically singular. He goes on to say that “what we learn. . . is that the 
total force depends on the precise shape of the two boundaries close to their 
intersection ’,. We emphasize this point by considering ‘pistons’ which do not 
have profile discontinuities and draw conclusions about the effect of the degree 
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of edge curvature on the magnitude of this force. The actual magnitude is difficult 
to find, but we expect i t  to be governed by a length scale on which our potential 
modelling fails, possibly a boundary-layer scale or the finite curvature of practical 
' sharp ' edges. 

The various flow effects are quantified in this paper and are shown to be quite 
substantial. The greatest occurs when the flow brings the piston close to resonance 
(or detunes a resonating piston), and we show also that the flow can lead to an 
instability. We deal only with the stable case but determine the limiting value 
of t,he flow velocity for which the work is valid. That limit is reached when the 
flow-induced suction force on a protruding piston exactly balances the stiffness 
of the restoring spring. 

2. Sound radiated into moving flow by compact surface vibration 
We consider homogeneous inviscid fluid in uniform motion parallel to a plane 

boundary 8. The fluid occupies the upper half-space and moves with velocity cM, 
c being the speed of sound. A compact section of the boundary vibrates, radiating 
sound to infinity. We choose a co-ordinate system X fixed in the fluid and write 
p ( X ,  t )  for the sound pressure far away from the vibrating part of the surface: 

6 is Dirac's delta function, primes denote differentiation with respect to the 
argument, po is the density of the undisturbed fluid and 6 the small displacement 
of the surface from its mean position. is finite only within a compact region 
moving relative to this co-ordinate sj~.tem with velocity - cM. We therefore 
choose a second co-ordinate system x, whose origin moves with the centre of the 
vibrating region, and write ~ ( x , T )  for the surface elevation at time T :  

<(X, T )  = ~ ( x ,  T ) ,  x = X + CMT. (2) 

The Jacobian of this transformation is unity, so that 

This equation is integrated by parts with respect to 7 ,  and we use the fact that 

M . X  - 1+- = l+McosO, say, (X - Y) = l + M . -  - 
F Y I  1x1 

from which it follows that 

We now restrict our attention to very compact surface sources, so that the small 
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Sound field is stationary on this distant constant-phase 
surface S,, which moves with the flow 

\ 
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Vibrating section of the plane surface S 

FIGURE 1. Diagram illustrating the co-ordinate system and the model problem. 

differences in the retarded time are negIigible; the distant wave field is then 
determined by the instantaneous source strength Q ; 

Q(t-N) C 

at a level 

. . .  
and'has mean-square amplitude 

- p t m -  IXll4 
p2(x7 t, = 4n21xp 11 + M cos 816' (7)  

where an overbar denotes an average taken over many 'cycles'. This sixth-power 
dependence on the Doppler factor is precisely that obtained by Lighthill for 
moving quadrupoles; in fact, the detailed structure of (4) and (10) is exactly that 
of the Lighthill theory. 

We now examine conditions on a distant control hemisphere S, that lies 
parallel to the phase fronts radiated by the vibrating surface. Figure 1 illustrates 
the point that the centre of the hemisphere, of radius 1x1, has drifted with the 
fluid a distance MIXI downstream of the vibrating section while sound travelled 
out from its source to reach the surface. On this surface the radiation is as 
statistically stationary in time as the vibration which produced it. 

Sound energy crosses S, a t  a mean rate 
- 

per unit area. 
p 2  M . X F  -+- 

P O C  1x1 P O C  

The first term represents the rate of working of the sound pressure and the second 
the rate a t  which the mean flow convects the energized fluid across S,. The mean 
radiation energy density isz/poc2 (the sum of equal kinetic and potential parts) 
and the volume flux out of S, is cM . X/l XI, or CM cos 8, per unit area. 
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The total acoustic power P radiated into the moving stream is therefore 

and provided that the source vibration is statistically stationary, so that 
- - 
p2(X, t )  = p2(x - cMt, t) = P(x, 0) = p ( X ,  0), 

Low Mach number flow evidently increases the sound energy radiated from 
a vibrating surface, the increase being 5 M 2  times the power radiated into fluid 
a t  rest. 

Again this convective amplification of energy is in exact parallel with the 
aerodynamic sound problem; the factor (1 - M cos O)-s for individual quadru- 
poles is subject to the Ffowcs Williams (1963) modification to account for the 
fixed source volume, only a fraction 1 - M cos 8 of which is an effective sound 
producer. 

Where does this extra energy come from Z There are two potential sources, as 
can be seen by considering the rate a t  which energy crosses the source boundary 
surface S.  In  fluid-fixed co-ordinates, that energy flux is 

P = I S P  (X, t )  - a t  (X, t )  d2X, 
at 

an expression which may be written in source-fixed co-ordinates as 

because 

The first term represents the power extracted from the surface vibration, P, say, 
and the second power extracted from the mean flow to overcome the steady drag 
force on the boundary surface, p aq/ale, being the component of the surface stress 
in the i direction. We denote this drag-induced power by Pd, and evaluate it by 
determining the steady drag on the surface X,, which must equal the boundary 
drag on S. The distant pressure, with its zero mean value, cannot contribute to 
the drag on S,, which is comprised entirely of terms arising from the mass flux 
times the unsteady part of the momentum per unit mass (the steady part 
amounting to zero by mass conservation). The drag on S ,  is therefore 
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= 8M (po&2/nc2) (1 + O(M2) ) .  (13) 

The power absorbed from the mean flow to overcome this drag is 

Pd = c M D  = gM2poQ2/nc. 

P, = (1  +y-B2) p0&2/2nc. 

(14) 

By subtraction, since, from (lo), P = P, + Pd = ( 1  + 5M2)p0&2/2m, 

(15) 

Evidently, the increased radiation induced by the mean flow draws its energy 
from both the surface and the mean flow, the two parts being in the ratio 2 : 1. 
The radiation damping of the surface motion will thus be increased by the flow 
to a value 1 + Y M 2  times its value in stagnant fluid. This will now be confirmed 
by a local calculation. 

3. The local interaction between a flow and a compact vibrating 
surface 

We continue to consider homogeneous inviscid fluid in uniform motion parallel 
to an unsteady plane boundary. The fluid occupies the upper half-space and 
moves with velocity cM,  c being the speed of sound. A compact circular section 
of the boundary vibrates, and we refer to this section as the piston. The remainder 
of the boundary, which is rigid, is the baffle. The piston is held in place by a spring 
whose undisturbed length keeps the piston face flush with t,he baffle. 

To investigate the local effect of the flow, we first calculate the force exerted 
on the piston owing to its own small oscillations. We choose a co-ordinate 
system X fixed in the fluid and write again the pressure at X as 

6 is non-zero only on the piston face, which is moving relative to this co-ordinate 
system with velocity - c M .  The force on the piston is 

c 

We evaluate the integrals by expanding the retarded time in a Taylor series 
about the point X = Y, and this procedure is valid provided that the piston is 
compact, i.e. provided that 



696 

The integrals are now transferred t o  the piston- fixed co-ordinate system X, 
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xi = X$+ClMt8,,, E(Y,t) = q(y,t), (18) 

in which the force is expressed as 

The terms which are independent of c (i.e. the terms remaining non-zero on 
letting c + co) are the ‘incompressible ’ flow terms: 

The x integration can be performed immediately : 

where a is the radius of the piston. E(k) is the elliptic int,egral of the second kind. 
This result is obtained by the use of Copson’s (1947) formula, which states that 

We do not expect to be able to find the exact value of the force in the case of 
a piston whose angle of contact is in-. In  that case we can write 

Y(Y’t)  = m a -  IYl)Y(t) 

and find that the expression for the ‘incompressible’ force has a singularity 
arising from the integral 

When we integrate by parts once we obtain 

which contains a term E’(k) as k-t 1. The singularity is negative and logarithmic. 
This singularity has arisen through the inability of our linearized potential 

model to deal with the surface discontinuity a t  the piston edge. This point can 
be demonstrated by the following examples. Suppose that the ‘piston’ is flexible 
and is flush with the baffle a t  its edge, rising to a peak a t  its centre. During an 
oscillation the peak varies from + 171 to - 1q(, but the edge remains flush. The 
elevation of the ‘piston’ can be represented, for example, by the functions 

(1- Iyl2/a2)H(a- IYl)v(t)’  (1  - lY12/a2)2H(a- l Y l ) N .  (24) 
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These 'pistons ' lead to mean-flow-induced forces of 

respectively. It is evident that this piston force term is a mean-flow effect. It 
represents a suction when the piston protrudes from the boundary and is caused 
by the depression when the flow accelerates past the blockage presented by 
the piston. The magnitude of the force is highly sensitive to any variation in the 
piston geometry. 

One way of admitting the nonlinearity of the problem leads one to  evaluate 
the force on the actual surface of the piston, i.e. a t  a height 7 above the base 
surface. The integral required is then 

and this limits the previous singularity to a value 

PaU271n{141/4+O(r), Irl e a. (27) 

This is actually the exact expression for the force on the face of a circular piston 
protruding from a baffle into otherwise uniform potential flow. We cannot hope 
to get a meaningful value for this nonlinear mean-flow suction, as it must in any 
practical flow depend on boundary-layer and viscous effects. But the actual 
magnitude of this force is of little concern; it is bound to be expressible in the form 

paU2r In (€ /a) ,  (28) 

where e is the length scale on which our potential modelling has broken down. 
The presence of the logarithmic function ensures that although our estimate of 
e/u may not be very accurate, the error will have little effect on the value of the 
force. Accordingly we write the suction force as 

where A ,  is a constant. 

The majority pose no difficulty but those terms of the form 

paU27(t) A,, (29) 

The remaining terms in (1 9) can be evaluated to any desired degree of accuracy. 

M2nlx - y pn-1 82, [H(a  - I Y I )I/aYP 
have singularities of the foregoing type and must be treated in a similar way. 
Each term is at least order M2 smaller than the first, and we ignore them in this 
low Mach number problem to obtain 

F(t )  = &a37"(t) - - p , U U ~ ~ ( t ) A , - -  POa47r 7"(t) 
2c 

This equation determines the flow-induced relation between the piston dis- 
placement and the surface restoring force. Any mechanical system will have 
another relation between the piston force and displacement. If both are ever in 
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agreement, then a self-sustained piston oscillation is possible. When no such 
flutter condition exists (30) provides an expression for the impedance imposed 
on the piston surface by the presence of the moving compressible fluid. We 
examine this in detail below, an examination that is much simplified if the piston 
is supposed to be in harmonic motion a t  angular frequency w .  

4. The influence of the flow on the apparent mechanical properties of 
the piston 

We now suppose that the harmonically (exp { - iwt}) vibrating piston has mass 
m, is restrained by a spring of stiffness K and has a damping factor p. We accord- 
ingly define the piston impedance to be 

Z ( w )  = -p+ ( i /w)(mw2- K) .  (31)  

The piston presents a resistance 2 to any system driving it a t  unit velocity. 
The piston is excited by some external force F,(t), say, which could be exerted 

mechanically, via the support system, or produced by an acoustic source in the 
fluid. Piston motion disturbs the fluid to create an additional force F(t) according 
t’o (30).  

The characteristic equation for the piston is therefore 

F( t )  + <(t)  + nzy”(t) +Pq’(t) + Ky(t)  = 0,  (32)  

{ W Z ~ ‘ ~ - -  KU+/3,iw)Tj(w) = F’(W). (33 )  

V ( W )  and F,(u) are the complex amplitudes of the piston motion and external 
force, respectively, and we have rearranged the terms to show how the flow has 
affected the apparent piston constants, the apparent mass, stiffness and damping 
factor in the presence of flow being given by 

I na,, = m+~p,a3 -~poa3(~a /c )2+4poa31M2,  

1 K,  = l i - p o a U 2 A , ( l + ~ M 2 ) ,  
(34) . .  

p,a4w% 5p,a4~2~n1112 pOa4u27r w a  
Bl, = P+ 7&- + 3c --($J 12c 

(A,  and IT are constants to be determined by factors not incorporated in our 
analysis.) 

This approximation is accurate to order M 2  and order (ka)2, which are both 
small quantities. Equation (33)  has no non-trivial real roots for i;”,(w) = 0, so 
that no self-sustained harmonic motions can exist. $po a3 is the well-known 
virtual mass of a baffled piston oscillating into a static fluid of density p, and 
- zpa3(wa/c )2  and 4pa3M2 are respectively the lowest-order compressible-fluid 
‘ non-compactness ’ and Mach-number corrections to that term. These affect only 
the level of response, unlike the stiffness correction, which can easily result in 
instability and flutter. pa4u2r /2c  is the radiation damping, a term that, in 
accordance with our earlier analysis, is increased in flow by a factor 

1 +%OM2 
over its static-fluid value. 

(35) 
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The system is stable to small oscillations provided that K ,  > 0. When this 
condition fails, the piston-spring system becomes unstable because the spring is 
not strong enough to counter the flow-induced suction force on the protruding 
piston; the equations then break down. This condition thus defines a critical 
parameter, a2 say, which determines the stability of the system; it is stable 
provided that a2 < 1 but is otherwise unstable. 

a2 = poAoaU2/K. (36) 

Provided that the system is stable, the resonance frequency is reduced by flow 
from its zero-velocity value 

to 

Because of this reduced stiffness term flow always reduces the value of the 
resonance frequency. The resonance frequency is also reduced, but to a lesser 
extent, because flow increases the apparent mass. 

When the piston is being irradiated above its no-flow resonance frequency the 
motion is dominated by the mass term, and flow will have little effect. However, 
if the forcing is below resonance there exists a flow velocity which brings the 
piston into resonance. Then the motion, and the sound field it generates, is 
enormously increased and is only controlled by damping. 

Conversely, if the piston is initially set to resonate’ in the no-flow situation, 
any flow detunes the piston and causes a consequent reduction in radiated energy. 
I n  addition to these effects, the stability limit a t  a2 = 1 is probably the most 
significant. There always exists a flow speed above which the motion is unstable; 
flutter then occurs and the motion can no longer be described by linear equations. 

5. Conclusions 
We have shown that flow has two distinct influences on sound radiation from 

a compact vibrating surface. First, whenever linearized boundary conditions are 
appropriate flow over a source with constant volume displacement gives rise to  
a pressure increase proportional to (1 - M cos This cubic dependence on the 
Doppler factor arises from a convective change in source volume and from a 
quadratic dependence on the contracted wave scale, exactly as in aerodynamic 
sound problems. This implies an energy increase of 5M2 times the energy radiated 
into static fluid. The increased energy is drawn in the ratio 2 : 1 from the surface 
and mean flow respectively. 

Even when the vibration induces an apparently monopole source whose ampli- 
tude is not altered by the flow, the convective amplification is evidently that 
appropriate to a quadrupole. This might in fact be expected, for it has long been 
recognized that aerodynamic sources are defined by the rate of change of the rate 
of mass addition and the double dependence on the time scale is quite charac- 
teristic of quadrupoles. Furthermore, the aerodynamic-noise analogy holds for 
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the energy calculation, it being important to recognize that the sixth-power 
dependence on the Doppler factor for the energy field of a single source element is 
converted to a fifth-power dependence for a source region of fixed scale. This 
result contains a warning that the general integral formulae containing weaker 
convective effects on surface sources need very careful handling, and notice must 
be taken of the fact that simple source elements may be coupled to a degree that 
depends on the convection speed. 

The amplitude of vibration is also altered, and there is a critical flow velocity 
above which local instability sets in. The flow changes the effective stiffness and 
alters the resonance frequency. These effects can be important, and arise princi- 
pally from the flow-induced force that counters the action of the elasticity that 
tends to keep the surface in its equilibrium position. 

The impedance of a baffled circular piston radiating into uniformly moving 
fluid was determined and the changes resulting from flow were shown in 3 2 to 
be independent of the detailed piston geometry. 

This work was conducted while D. J. Lovely was a research student in receipt 
of an S.R.C. grant. That support is gratefully acknowledged. 
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